Science

Power your strategy with marketing science thru marketing data modeling, statistical analysis for marketing, and evidence-based hypotheses. Transform complex data into actionable decisions that improve the efficiency of your media investment and strengthen the real impact of each campaign.

Discover the modules included on Science

Marketing Mix Modeling to Measure the Real Impact of Your Marketing

With Marketing Mix (MMM), you can measure how much of your sales is explained by media investment and how much by external factors such as price, promotions, or seasonality. This advanced statistical model allows you to assign real credit to each channel, optimize budgets, and justify investments with scientific evidence. Unlike last-interaction reports, the MMM offers a multi-channel, cookie-agnostic view, adapted to the new era of digital privacy.


The result: smarter strategies, better allocated budgets, and decisions based on reliable data.

Media and Creative Audit with a Data-Driven Approach

Auditing is essential in marketing science: it allows for evaluating media investment and creative performance as an integrated system. Thus, waste is reduced, performance is improved, and decisions are strengthened with analytical insights.

The media audit detects inefficiencies in digital media buying and campaigns. Analyze audiences, costs, and frequency to prevent leakage and optimize ROI.

The creative audit measures the impact of each ad, identifies performance patterns, and provides key data to improve advertising campaigns.

Geo-experimentation applied to marketing to optimize investment and advertising performance.

Geo-experimentation allows you to validate the effectiveness of your campaigns by running tests in equivalent regions. Test and control areas are compared to achieve precise attribution and reliable insights into the true impact.
Applicable to both digital and traditional campaigns, it measures increases in sales, traffic, or leads. It provides causal evidence to determine which strategies work, in which contexts, and with what impact. Thus, experimentation becomes key in data-driven marketing decisions.

Internationally Recognized Measurement Partners

Meta Business Partners

TikTok Marketing Partners

AWS Partner Network

Access our Marketing Science ebook

Access now

resources

Reference material

blog

blog

16 | 06 | 2025
The current challenge of measuring marketing: what can we do better?

In recent years, traditional attribution models have become less accurate. Privacy restrictions, the disappearance of cookies, and "last-click" models are no longer sufficient to understand how each marketing effort contributes to the bottom line. Main Pain Points Privacy and Individual Data: New regulations prevent individual user tracking, reducing the effectiveness of models that rely on cookies. In a more private world and less efficient cookies, attribution based on individual data loses statistical effectiveness in favor of anonymized aggregated data. Last-Click Attribution: Last-click attribution overvalues the last channel prior to a sale and underestimates the contributions of previous interactions (awareness, consideration, remarketing). Lack of incremental and holistic vision: Fragmented measurement fails to understand the true impact of each channel on the entire funnel or how external factors (promotions, economics, seasonality) affect results. Marketing Mix Modeling: Beyond Attribution Marketing Mix Modeling (MMM) is an analytical approach that uses statistical and econometric models to quantify the impact of multiple variables—such as paid and organic media, promotions, pricing, and seasonality—on business outcomes (sales, revenue, and leads). Why is it important today? In an environment where data is more limited but decisions must be more precise, MMM becomes an essential tool: It works without personal data: It operates on aggregated data, without the need for cookies or individual identifiers. It optimizes budgets: It allows reallocation of investment to channels with the highest marginal ROI. It offers a full-funnel view: It considers the entire marketing ecosystem, beyond the digital channel. In this way, MMM doesn't replace attribution models: it complements them. While attribution models (such as MTA) trace the path of an individual user, MMM measures the aggregate effect. Both models enhance each other when combined with experimentation (A/B testing or GeoLift). Una visión 360°: lo que el MMM realmente mide A diferencia de los modelos de atribución tradicionales, el MMM ofrece una comprensión integral de todos los factores que influyen en los resultados. Medios online: Tráfico pago, orgánico, redes sociales, influencers, email, podcasts. Medios offline: TV, radio, vía pública, prensa, eventos. Factores comerciales: Precios, promociones, descuentos, canales de distribución. Estacionalidad: Verano/invierno, días festivos, eventos clave. Variables macroeconómicas: Inflación, desempleo, tipo de cambio, clima, regulaciones. Este enfoque ayuda a responder una pregunta clave: ¿Qué parte de las ventas puede explicarse por nuestras acciones de marketing y qué parte por factores externos? ¿Cómo implementamos MMM en Bunker DB? Nuestra metodología combina precisión técnica y aplicabilidad real. Así trabajamos: Recolección y normalización de datos internos y externos. Unificamos toda la información necesaria —desde inversión en medios hasta variables macroeconómicas— asegurando coherencia estadística. Modelado econométrico y estimación de impacto. Aplicamos modelos iterativos para estimar cuánto aporta cada variable a las ventas, incluyendo el ROI marginal por canal. Curvas de saturación por medio. Identificamos puntos donde la inversión deja de ser eficiente y sugerimos realocaciones óptimas. Calibración con estudios de incrementalidad. Contrastamos el modelo con test reales para mejorar su precisión. Optimización del presupuesto. Evaluamos la diferencia entre el presupuesto original y el optimizado, mostrando claramente las ganancias posibles en ROAS. Impacto de negocio en casos reales No hablamos solo de teoría. Varias marcas en LatAm ya están usando MMM para transformar su estrategia: Telecomunicaciones: Para Liberty Latin America, desarrollamos un marketing mix modeling que incrementó en 15% su potencial de optimización. Lee más del caso en: Servicios financieros: Para cinco (5) marcas distintas, nuestros resultados revelaron que la implementación efectiva de MMM puede incrementar entre un 3% y un 15% las conversiones con el mismo presupuesto publicitario. Lee más del caso en: Estos resultados muestran el potencial del MMM para generar eficiencia real y tangible. Conclusión: un marketing más inteligente y basado en datos El Marketing Mix Modeling es una respuesta moderna a un contexto más complejo. Permite a las marcas medir con precisión, decidir con evidencia y optimizar con confianza. Una mejor medición vendrá de utilizar los modelos correctos, no los datos individuales.

Request your demo and discover a new way of marketing.